Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2066118

ABSTRACT

Echinacea purpurea (L.) Moench is one of the most economically important medicinal plants, cultivated worldwide for its high medicinal value and with several industrial applications in both pharmaceutical and food industries. Thanks to its various phytochemical contents, including caffeic acid derivatives (CADs), E. purpurea extracts have antioxidant, anti-inflammatory, and immuno-stimulating properties. Among CADs, chicoric acid is one of the most important compounds which have shown important pharmacological properties. The present research was aimed at optimizing the production of chicoric acid in E. purpurea cell culture. Methyl jasmonate (MeJa) at different concentrations and for different duration of treatments was utilized as elicitor, and the content of total polyphenols and chicoric acid was measured. Several genes involved in the chicoric acid biosynthetic pathway were selected, and their expression evaluated at different time points of cell culture growth. This was performed with the aim of identifying the most suitable putative molecular markers to be used as a proxy for the early prediction of chicoric acid contents, without the need of expensive quantification methods. A correlation between the production of chicoric acid in response to MeJa and an increased response to oxidative stress was also proposed.


Subject(s)
Biological Products , Echinacea , Acetates , Antioxidants/metabolism , Biological Products/metabolism , Caffeic Acids , Cell Culture Techniques , Cyclopentanes , Echinacea/chemistry , Echinacea/metabolism , Oxylipins , Pharmaceutical Preparations/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Succinates
2.
Biochem Pharmacol ; 204: 115210, 2022 10.
Article in English | MEDLINE | ID: covidwho-1982612

ABSTRACT

In this review it is attempted to summarize current studies about formation of eicosanoids and other oxylipins in different human macrophages. There are several reports on M1 and M2 cells, also other phenotypes have been described. The eicosanoids formed in the largest amounts are the COX products TxB2 and PGE2. Thus shortlived bioactive TxA2 is a dominating product both in M1- and in M2-lineages, one exception seems to be MGM-CSF, TGFß cells. 5-LOX products are produced in both M1 and M2 macrophages, as well as in not fully polarized cells of both lineages. MM-CSF as well as M2 macrophages produced LTC4 more readily compared to M1 lineage cells. In MGM-CSF, TGFß cells LTB4 is a major eicosanoid, in line with high expression of LTA4 hydrolase. Recent reports described increased formation of leukotrienes in macrophages subjected to trained immunity with inflammatory transcriptional reprogramming. Also in macrophages derived from monocytes collected from post-COVID-19 patients. 15-LOX-1 is strongly upregulated in CD206+ M2 cells (M2a), differentiated in presence of IL-4. These macrophages also express 15-LOX-2. In incubations with pathogenic E. coli as well as other stimuli 15(S)-HETE and 17(S)-HDHA were major oxylipins formed. Also, the SPM precursor 5,15-diHETE and the SPM RvD5 were produced in considerable amounts, while other SPMs were less abundant. In M2 macrophages incubated with E. coli or S. aureus the cytosolic 15-LOX-1 enzyme accumulated to punctuate structures in a Ca2+ dependent manner with a relatively slow time course, leading to formation of mediators from endogenous substrate. Chalcones, flavone-like anti-inflammatory natural products, induced translocation of 15-LOX-1 in M2 cells, with high formation of 15-LOX derived oxylipins.


Subject(s)
Biological Products , Eicosanoids , Macrophages , Oxylipins , Arachidonate 5-Lipoxygenase/metabolism , Biological Products/metabolism , COVID-19 , Chalcones , Cyclooxygenase 2/metabolism , Eicosanoids/metabolism , Escherichia coli/metabolism , Flavones , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Hydrolases/metabolism , Hydroxyeicosatetraenoic Acids/metabolism , Interleukin-4/metabolism , Leukotrienes , Macrophage Colony-Stimulating Factor , Macrophages/metabolism , Oxylipins/metabolism , Prostaglandins E/metabolism , Scavenger Receptors, Class E/metabolism , Staphylococcus aureus , Transforming Growth Factor beta/metabolism
3.
Metabolism ; 131: 155197, 2022 06.
Article in English | MEDLINE | ID: covidwho-1768410

ABSTRACT

BACKGROUND: Lipids are involved in the interaction between viral infection and the host metabolic and immunological responses. Several studies comparing the lipidome of COVID-19-positive hospitalized patients vs. healthy subjects have already been reported. It is largely unknown, however, whether these differences are specific to this disease. The present study compared the lipidomic signature of hospitalized COVID-19-positive patients with that of healthy subjects, as well as with COVID-19-negative patients hospitalized for other infectious/inflammatory diseases. METHODS: We analyzed the lipidomic signature of 126 COVID-19-positive patients, 45 COVID-19-negative patients hospitalized with other infectious/inflammatory diseases and 50 healthy volunteers. A semi-targeted lipidomics analysis was performed using liquid chromatography coupled to mass spectrometry. Two-hundred and eighty-three lipid species were identified and quantified. Results were interpreted by machine learning tools. RESULTS: We identified acylcarnitines, lysophosphatidylethanolamines, arachidonic acid and oxylipins as the most altered species in COVID-19-positive patients compared to healthy volunteers. However, we found similar alterations in COVID-19-negative patients who had other causes of inflammation. Conversely, lysophosphatidylcholine 22:6-sn2, phosphatidylcholine 36:1 and secondary bile acids were the parameters that had the greatest capacity to discriminate between COVID-19-positive and COVID-19-negative patients. CONCLUSION: This study shows that COVID-19 infection shares many lipid alterations with other infectious/inflammatory diseases, and which differentiate them from the healthy population. The most notable alterations were observed in oxylipins, while alterations in bile acids and glycerophospholipis best distinguished between COVID-19-positive and COVID-19-negative patients. Our results highlight the value of integrating lipidomics with machine learning algorithms to explore the pathophysiology of COVID-19 and, consequently, improve clinical decision making.


Subject(s)
COVID-19 , Lipidomics , Bile Acids and Salts , Humans , Machine Learning , Oxylipins
4.
Free Radic Biol Med ; 180: 236-243, 2022 02 20.
Article in English | MEDLINE | ID: covidwho-1649942

ABSTRACT

The key role of inflammation in COVID-19 induced many authors to study the cytokine storm, whereas the role of other inflammatory mediators such as oxylipins is still poorly understood. IMPRECOVID was a monocentric retrospective observational pilot study with COVID-19 related pneumonia patients (n = 52) admitted to Pisa University Hospital between March and April 2020. Our MS-based analytical platform permitted the simultaneous determination of sixty plasma oxylipins in a single run at ppt levels for a comprehensive characterisation of the inflammatory cascade in COVID-19 patients. The datasets containing oxylipin and cytokine plasma levels were analysed by principal component analysis (PCA), computation of Fisher's canonical variable, and a multivariate receiver operating characteristic (ROC) curve. Differently from cytokines, the panel of oxylipins clearly differentiated samples collected in COVID-19 wards (n = 43) and Intensive Care Units (ICUs) (n = 27), as shown by the PCA and the multivariate ROC curve with a resulting AUC equal to 0.92. ICU patients showed lower (down to two orders of magnitude) plasma concentrations of anti-inflammatory and pro-resolving lipid mediators, suggesting an impaired inflammation response as part of a prolonged and unsolvable pro-inflammatory status. In conclusion, our targeted oxylipidomics platform helped shedding new light in this field. Targeting the lipid mediator class switching is extremely important for a timely picture of a patient's ability to respond to the viral attack. A prediction model exploiting selected lipid mediators as biomarkers seems to have good chances to classify patients at risk of severe COVID-19.


Subject(s)
COVID-19 , Oxylipins , Humans , Inflammation , Retrospective Studies , SARS-CoV-2
5.
Eur J Pharmacol ; 890: 173648, 2021 Jan 05.
Article in English | MEDLINE | ID: covidwho-1385504

ABSTRACT

In an attempt to search for selective inhibitors against the SARS-CoV-2 which caused devastating of lives and livelihoods across the globe, 415 natural metabolites isolated from several plants, fungi and bacteria, belonging to different classes, were investigated. The drug metabolism and safety profiles were computed in silico and the results showed seven compounds namely fusaric acid, jasmonic acid, jasmonic acid methyl ester, putaminoxin, putaminoxin B and D, and stagonolide K were predicted to having considerable absorption, metabolism, distribution and excretion parameters (ADME) and safety indices. Molecular docking against the receptor binding domain (RBD) of spike glycoprotein (S1) and the main protease (Mpro) exposed the compounds having better binding affinity to main protease as compared to the S1 receptor binding domain. The docking results were compared to an antiviral drug penciclovir reportedly of clinical significance in treating the SARS-CoV-2 infected patients. The results demonstrated the test compounds jasmonic acid, putaminoxins B and D bound to the HIS-CYS catalytic dyad as well as to other residues within the MPro active site with much greater affinity than penciclovir. The findings of the study suggest that these compounds could be explored as potential SARS-CoV-2 inhibitors, and could further be combined with the experimental investigations to develop effective therapeutics to deal with the present pandemic.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , Coronavirus 3C Proteases/metabolism , Phytochemicals/pharmacology , Protease Inhibitors/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/pharmacokinetics , Bacteria/metabolism , Biological Products/pharmacokinetics , Blood-Brain Barrier/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Cyclopentanes/pharmacokinetics , Cyclopentanes/pharmacology , Fungi/metabolism , Humans , Intestinal Absorption , Lactones/pharmacokinetics , Lactones/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Oxylipins/pharmacokinetics , Oxylipins/pharmacology , Phytochemicals/pharmacokinetics , Plants/metabolism , Protease Inhibitors/pharmacokinetics , Protein Binding , Protein Domains , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL